Learning to Simulate Natural Language Feedback for Interactive Semantic Parsing
Published in ACL, 2023
Authors: Hao Yan, Saurabh Srivastava, Yintao Tai, Sida I. Wang, Wen-tau Yih, Ziyu Yao
Project URL: https://aclanthology.org/2023.acl-long.177/
Code: https://github.com/hyan5/Learning_to_Simulate_NL_Feedback
Abstract
Interactive semantic parsing based on natural language (NL) feedback, where users provide feedback to correct the parser mistakes, has emerged as a more practical scenario than the traditional one-shot semantic parsing. However, prior work has heavily relied on human-annotated feedback data to train the interactive semantic parser, which is prohibitively expensive and not scalable. In this work, we propose a new task of simulating NL feedback for interactive semantic parsing. We accompany the task with a novel feedback evaluator. The evaluator is specifically designed to assess the quality of the simulated feedback, based on which we decide the best feedback simulator from our proposed variants. On a text-to-SQL dataset, we show that our feedback simulator can generate high-quality NL feedback to boost the error correction ability of a specific parser. In low-data settings, our feedback simulator can help achieve comparable error correction performance as trained using the costly, full set of human annotations.
Recommended citation: Hao Yan, Saurabh Srivastava, Yintao Tai, Sida I. Wang, Wen-tau Yih, and Ziyu Yao. 2023. Learning to Simulate Natural Language Feedback for Interactive Semantic Parsing. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3149–3170, Toronto, Canada. Association for Computational Linguistics.
Download Paper | Download Bibtex